登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页>《中国测试》期刊>本期导读>基于超声导波的复合材料结构疲劳损伤监测实验研究

基于超声导波的复合材料结构疲劳损伤监测实验研究

115    2019-09-29

¥0.00

全文售价

作者:路祥, 严刚, 汤剑飞

作者单位:南京航空航天大学航空学院 机械结构力学及控制国家重点实验室, 江苏 南京 210016


关键词:超声导波;复合材料;疲劳损伤;小波变换;多元偏值分析


摘要:

为快速评估复合材料结构的疲劳损伤状况,采用超声导波和时-频分析相结合的方法, 对疲劳状态下的复合材料结构进行在线连续监测。对玻璃纤维增强复合材料试件进行拉伸疲劳试验,使用激光引伸计获取试件纵向刚度的变化,探究试件内部疲劳损伤的累积情况。利用小波变换对由压电传感元件激励和接收的超声导波信号在时频域进行分析,提取与疲劳损伤有关的信号特征;最后,通过多元偏值分析引入马氏平方距离,融合多个信号特征,确定复合材料试件中疲劳损伤的存在性以及表征其演变过程。实验结果表明所提出方法在复合材料结构疲劳损伤连续监测方面的有效性。


Experimental study on monitoring of fatigue damage for composites by using ultrasonic guided waves
LU Xiang, YAN Gang, TANG Jianfei
State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
Abstract: To rapidly evaluate the fatigue damage of composite structures, an online damage detection method is presented for continuously monitoring of fatigue damage in composite structures by using ultrasonic guided waves and time-frequency analysis. Glass fiber reinforced polymer (GFRP) specimens are fatigued under tension-tension loads. A laser extensometer is used to obtain the degradation of longitudinal stiffness of the specimens under fatigue states to reflect the accumulation of internal fatigue damages. Wavelet transform is applied to the wave signals actuated and sensed by piezoelectric transducers in time-frequency domain to extract features related to fatigue damage. Finally, Mahalanobis squared distance (MSD) is introduced through multivariate outlier analysis to determine whether fatigue damage exists and characterize their evolution in the specimen by integrating multiple signal features. The experimental results have demonstrated the effectiveness of the guide waves-based method in continuously monitoring of fatigue damage for composites.
Keywords: ultrasonic guided waves;composites;fatigue damage;wavelet transform;multivariate outlier analysis
2019, 45(9):38-44  收稿日期: 2018-11-20;收到修改稿日期: 2019-01-08
基金项目: 国家自然科学基金项目(11602104);机械结构力学及控制国家重点实验室自主课题项目(MCMS-I-0218G01);南京航空航天大学基本科研业务费(NS2016011)
作者简介: 路祥(1993-),男,安徽蚌埠市人,硕士研究生,专业方向为复合材料结构健康监测
参考文献
[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12
[2] CHENG H X. Composite material application and development in pressure vessels[J]. Advanced Materials Research, 2011, 321:222-225
[3] VAN P W, DEGRIECK J. Coupled residual stiffness and strength model for fatigue of fibre reinforced composite materials[J]. Compos Sci Technol, 2002, 62:687-96
[4] SHOKRIEH M M, LESSARD L B. Multiaxial fatigue behaviour of unidirectional plies based on uniaxi-al fatigue experiments-Ⅱ experimental evalua-tion[J]. Int J Fatigue, 1997, 19:209-17
[5] RAZVAN A, REIFSNIDER K. Fiber fracture and stren-gth degradation in unidirectional graphite/epoxy composite materials[J]. Theoretical and Applied Fracture Mechanics, 1991, 16(1):81-89
[6] SU Z, YE L, LU Y. Guided lamb waves for identi-fication of damage in composite structures:a re-view[J]. Journal of Sound and Vibration, 2006, 295:753-780
[7] YAN G. A particle filter method for damage loca-tion in plate-like structures by using Lamb waves[J]. Structural Control and Health Monitoring, 2014, 21:847-867
[8] LI F, PENG H K, MENG G. Quantitative damage image construction in plate structures using a cir-cular PZT array and lamb waves[J]. Sensors and Actuators A-Physical, 2014, 214(4):66-73
[9] 严刚, 周丽, 孟伟杰. 基于Lamb波与时频分析的复合材料结构损伤监测和识别[J]. 南京航空航天大学学报, 2007, 39(3):397-402
[10] 白生宝, 肖迎春, 武湛君. 基于Lamb波和典型相关分析的复合材料结构损伤监测[J]. 压电与声光, 2018, 40(1):149-154
[11] MARZANI A, MARCHI L D. Characterization of the elastic moduli in composite plates via dispersive guided waves data and genetic algorithms[J]. Journal of Intelligent Material Systems and Structures, 2013, 24(17):2135-2147
[12] ZHAO J L, CHILLARA V, CHO H, et al. Evaluation of fatigue damage accumulation in composites via lin-ear and nonlinear guided wave methods[C]//AIP Conference Proceedings, 2016, 1706(1):23-31.
[13] RHEINFURTH M, KOSMANN N, SAUER D, et al. Lamb waves for non-contact fatigue state evaluation of composites under various mechanical loading co-nditions[J]. Composites Part A, 2012, 43(8):1203-1211
[14] SEALE M D, MADARAS E I. Lamb wave evaluation of the effects of thermal-mechanical aging on com-posite stiffness[J]. Journal of Composite Materi-als, 2000, 34(1):27-38
[15] TAO C C, JI L H, QIU J H, et al. Characterization of fatigue damages in composite laminates using lamb wave velocity and prediction of residual life[J]. Composite Structures, 2017, 166:219-228
[16] ADDEN S, PFLEIDERER K, SOLODOV I, et al. Charac-terization of stiffness degradation caused by fa-tigue damage in textile composites using circum-ferential plate acoustic waves[J]. Composites Sci-ence and Technology, 2008, 68:1616-1623
[17] PAVLOPOULOU S, WORDEN K, SOUTIS C. Novelty detection and dimension reduction via guided ultrasonic waves:damage monitoring of scarf repairs in composite laminates[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(4):549-566
[18] MUSTAPHA F, WORDEN K, PIERCE SG, et al. Damage detection using stress waves and multivariate sta-tistics:an experimental case study of an aircraft component[J]. Strain, 2007, 43(1):47-53
[19] WORDEN K, MANSON G, FIELLER N. Damage de-tection using outlier analysis[J]. Journal of Sound and Vibration, 2000, 229(3):647-667