您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>薄膜体声波谐振器应力负载效应摄动分析

薄膜体声波谐振器应力负载效应摄动分析

3381    2019-09-28

免费

全文售价

作者:高杨, 张大鹏, 刘婷婷

作者单位:西南科技大学信息工程学院, 四川 绵阳 621010


关键词:微加速度计;薄膜体声波谐振器;频率偏移;摄动;有限元


摘要:

薄膜体声波谐振器(FBAR)力学传感器有很大的应用潜力,但其敏感机理——应力负载效应尚不能被准确描述。为准确描述应力负载效应,预测FBAR力学传感器的频率灵敏度,提出一种摄动与有限元联合求解方法,并利用该方法计算FBAR微加速度计的频率-加速度灵敏度。首先,在COMSOL有限元软件中计算FBAR微加速度计在加速度下其压电层AlN的平均偏置应力;接着,在COMSOL中计算单个FBAR的谐振频率与相应的振型;最后,将有限元的计算数据和AlN的材料常数代入摄动积分公式中,得到FBAR微加速度计的频率-加速度灵敏度约为–98.879 kHz/g,与文献报道的实验结果–100 kHz/g相吻合,验证方法的可行性。


Perturbation analysis of frequency shifts in thin film bulk acoustic wave resonator under biasing fields
GAO Yang, ZHANG Dapeng, LIU Tingting
School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
Abstract: The mechanical sensor of thin film bulk acoustic resonator (FBAR) has great potential for application, but its sensitive mechanism, stress-loading effect, can not be accurately described. In order to accurately describe the stress loading effect and predict the sensitivity of FBAR mechanical sensor, a combined perturbation and finite element method is proposed. The frequency-acceleration sensitivity of FBAR accelerometer is calculated by this method. Firstly, the average biasing stress of piezoelectric layer AlN of FBAR accelerometer under acceleration is calculated in COMSOL finite element software. Then, the resonant frequency and corresponding mode shape of a single FBAR are calculated in COMSOL. Finally, the calculated data of finite element and the material constants of AlN are substituted into the perturbation integral formula, and the frequency-acceleration sensitivity of FBAR micro accelerometer is about -98.879 kHz/g. It is consistent with the reported experimental result of -100 kHz/g, and feasibility of this method is validated.
Keywords: micro accelerometer;thin film bulk acoustic wave resonator;frequency shift;perturbation;finite element
2019, 45(9):1-5  收稿日期: 2019-02-21;收到修改稿日期: 2019-04-25
基金项目: 国家自然科学基金(61574131);四川省教育厅资助科研项目(17ZA0402)
作者简介: 高杨(1972-),男,四川绵阳市人,研究员,博士,研究方向为MEMS(微电子机械系统)
参考文献
[1] GAO J N, LIU G R, LI J, et al. Recent developments of film bulk acoustic resonators[J]. Functional Materials Letters, 2016, 9(3):1630002
[2] 唐宁, 常烨, 刘晶,等. 新型便携式薄膜体声波谐振气体传感器的研制与应用[J]. 纳米技术与精密工程, 2016(5):331-336.
[3] PANG W, ZHAO H, KIM E S, et al. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection[J]. Lab on a Chip, 2012, 12(1):29-44
[4] CHIU K H, CHEN H R, HUANG R S. High-performance film bulk acoustic wave pressure and temperature sensors[J]. Japanese Journal of Applied Physics, 2007, 46(4):1392-1397
[5] NAGARAJU M B, LINGLEY A R, SRIDHARAN S, et al. 27.4 A 0.8 mm 3±0.68 psi single-chip wireless pressure sensor for TPMS applications[C]//Proc of IEEE International Solid-State Circuits Conference-(ISSCC), 2015:1-3.
[6] ZHANG H, KIM E S. Micromachined acoustic resonant mass sensor[J]. Journal of Microelectromechanical Systems, 2005, 14(4):699-706
[7] CAMPANELLA H, PLAZA J A, MONTSERRAT J, et al. High-frequency sensor technologies for inertial force detection based on thin-film bulk acoustic wave resonators (FBAR)[J]. Microelectronic Engineering, 2009, 86(4):1254-1257
[8] CAMPANELLA H, CAMARGO C J, ESTEVE J, et al. Sensitivity of thin-film bulk acoustic resonators (FBAR) to localized mechanical forces[J]. Journal of Micromechanics and Microengineering, 2013, 23(6):065024(10)
[9] DELICADO A, CLEMENT M, OLIVARES J, et al. Influence of induced stress on AlN-solidly mounted resonators[C]//Proc of IEEE European Frequency & Time Forum, 2016.
[10] KOSINSKI J A. The fundamental nature of acceleration sensitivity[C]//Proc of IEEE International Frequency Control Symposium, 1996.
[11] WEBER J, LINK M, PRIMIG R, et al. Sensor for ambient pressure and material strains using a thin film bulk acoustic resonator[C]//Proc of IEEE Ultrasonics Symposium, 2005:1258-1261.
[12] CAMPANELLA H, PLAZA J A, MONTSERRAT J, et al. 12E-1 accelerometer based on thin-film bulk acoustic wave resonators[C]//Proc of IEEE Ultrasonics Symposium,2007:1148-1151.
[13] 赵俊武. FBAR的应力负载效应研究[D]. 绵阳:西南科技大学, 2017.
[14] 张大鹏, 高杨, 王宇航,等. 电极化对FBAR应力负载效应影响的分析[J]. 压电与声光, 2018, 40(3):59-62.
[15] TIERSTEN H F. On the nonlinear equations of thermo-electroelasticity[J]. International Journal of Engineering Science, 1971, 9(7):587-604
[16] SINHA B K, TIERSTEN H F. First temperature derivatives of the fundamental elastic constants of quartz[J]. Journal of Applied Physics, 1979, 50(4):2732-2740
[17] SINHA B K, TIERSTEN H F. On the temperature dependence of the velocity of surface waves in quartz[J]. Journal of Applied Physics, 1980, 51(9):4659-4665
[18] KOSINSKI J A. The fundamental nature of acceleration sensitivity[C]//Proc of IEEE International Frequency Control Symposium, 1996.
[19] MASSON J, REINHARDT A, Ballandras S. Simulation of stressed FBAR thanks to a perturbation method[C]//Proc of IEEE Mtt-s International Microwave Symposium Digest, 2005.
[20] PANDEY D K, SINGH D, YADAV R R. Ultrasonic wave propagation in Ⅲrd group nitrides[J]. Applied Acoustics, 2007, 68(7):766-777
[21] BRUGGER K. Pure modes for elastic waves in crystals[J]. Journal of Applied Physics, 1965, 36(3):759-768
[22] WANG Z, ZHAO J, GAO Y, et al. First-principle studies on the influence of anisotropic pressure on the physical properties of aluminum nitride[J]. Materials Research Express, 2017, 4(1):016303(8)