您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>发动机燃烧室出口温度分布测试的新型传感器

发动机燃烧室出口温度分布测试的新型传感器

2821    2019-08-27

免费

全文售价

作者:王棒1, 李亦军1, 王高2, 王凯2, 曾行昌3, 李铁林3

作者单位:1. 中北大学理学院, 山西 太原 030051;
2. 中北大学信息与通信工程学院, 山西 太原 030051;
3. 中国飞行试验研究院, 陕西 西安 710089


关键词:超声测温;燃烧室;温度分布;蓝宝石光纤


摘要:

发动机燃烧室出口的温度分布对于推进技术的发展具有重要意义,而现阶段发动机内部温度已达1 800℃以上,主要测温手段辐射测温和热电偶受限于限于精度和材料,对这种高温氧化环境无法测试。该文依据超声测温原理,设计了一套可以在超高温氧化环境下用一根蓝宝石光纤测量多点温度的温度分布测试系统,并且在20~1 800℃范围内进行标定并多次校准。实验结果表明该系统测量精确、重复性良好,在1 600℃时灵敏度为0.004 μs/℃,重复性达98.4%。在加装滞止罩后将感温元件封装于发动机燃烧室出口处,经过多此实验,测得了该燃烧室运行时出口处径向温度分布。


A new type sensor for measuring the temperature distribution of engine combustion chamber outlet
WANG Bang1, LI Yijun1, WANG Gao2, WANG Kai2, ZENG Xingchang3, LI Tielin3
1. School of Science, North University of China, Taiyuan 030051, China;
2. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China;
3. Chinese Flight Test Establishment, Xi'an 710089, China
Abstract: The temperature distribution of the engine combustion chamber outlet is of great significance for the development of propulsion technology. At this stage, the internal temperature of the engine has reached 1 800 ℃ or above. The main temperature measurement means radiation temperature measurement and thermocouple are limited to the accuracy and materials that cannot be tested in this high temperature oxidation environment. Based on the principle of ultrasonic temperature measurement, this paper designs a temperature distribution test system that can measure multi-point temperature with a sapphire fiber in an ultra-high temperature oxidation environment, and calibrates and calibrates it in the range of 20-1 800 ℃. The experimental results show that the system is accurate and reproducible. The sensitivity is 0.004 μs/℃ at 1 600 ℃ and the repeatability is 98.4%. After the stagnation cover is installed, the temperature sensing element is packaged at the exit of the engine combustion chamber. After many experiments, the radial temperature distribution at the exit of the combustion chamber is measured.
Keywords: ultrasonic temperature measurement;combustion chamber;temperature distribution;sapphire fiber
2019, 45(8):112-117  收稿日期: 2019-02-10;收到修改稿日期: 2019-03-25
基金项目: 航空科学基金(2017ZD30004)
作者简介: 王棒(1995-),男,山西晋城市人,硕士研究生,专业方向为超声测温技术
参考文献
[1] 邓进军,李凯,王云龙,等.发动机内壁高温测试技术[J].微纳电子技术, 2015, 52(3):110-117
[2] 韩绪军,涡轮叶片冷却结构参数化及带肋通道优化设计[D].哈尔滨:哈尔滨工业大学, 2011.
[3] 张兴红,邱磊,何涛,等.反射式超声波温度计设计[J].仪表技术与传感器, 2014(9):16-18
[4] 刘慧莉,贾云飞,曾庆徳,等.火箭发动机燃温测试传感器设计[J].测试技术学报, 2017, 4(31):346-351
[5] 张虎,李世伟,陈应航,等.非接触高温测量技术发展与现状[J].宇航计测技术, 2012, 32(5):68-71
[6] WEI YL, GAO YB, XIAO ZQ, et al. Ultrasonic Al2O3 ceramic thermometry in high-temperature oxidation environment[J]. Sensor, 2016, 32:56-67
[7] DAW J, REMPE J, TAYLOR S, et al. Ultrasonic thermometry for in-pile temperature detection[C]. In proceedings of the 7th international topical meeting on nuclear plant instrumentation, control, and human-machine interface technologies (NPIC&HMIT), 2010.
[8] DAW J, REMPE J, CREPEAU J. Update on ultrasonic thermometry development at idaho national laboratory[C]. In Proceedings of the 8th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies (NPIC&HMIT), 2012.
[9] DAW J, REMPE J, PALMER J, et al. NEET in-pile ultrasonic sensor enablement-FY-2013[C]. Idaho National Laboratory (INL):Idaho Falls,2013.
[10] 张兴红,蔡伟,向凤云,等.精密超声波温度测量仪设计[J].仪表技术与传感器, 2011(6):32-35
[11] 魏艳龙,王高,王兴起,等.铱铑合金超声导波方法的固体火箭发动机燃烧室温度测试[J].推进技术, 2018, 39(8):1856-1862
[12] 王瑾珏,张金,高望.一种新的超声表面波测温方法研究[J].应用声学, 2015, 34(3):278-282
[13] 田苗,王高,刘争光,等.超声脉冲测温技术初步研究[J].声学技术, 2017, 36(1):28-31
[14] 吴天,隋广慧.用于高温测量的蓝宝石光纤光栅的制备研究[J].计测技术, 2015, 35(6):37-42
[15] 祁海鹰,樊凡.燃烧室出口温度分布偏差的机理[J].燃烧科学与技术, 2013, 19(2):23-31