登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>民用飞机气动伺服弹性试飞激励响应仿真研究

民用飞机气动伺服弹性试飞激励响应仿真研究

196    2019-06-26

¥0.00

全文售价

作者:雷鸣1, 杨飞2, 霍幸莉1

作者单位:1. 中国飞行试验研究院, 陕西 西安 710089;
2. 中国商飞上海飞机设计研究院, 上海 200232


关键词:民用飞机;气动伺服弹性;飞行试验;激励响应;仿真


摘要:

为提高民用飞机气动伺服弹性试飞仿真预测能力,实现高效安全的民用飞机气动伺服弹性试飞。在民用飞机气动伺服弹性试飞方法的基础上,提出民用飞机气动伺服弹性试飞激励响应仿真方法。该方法以民用飞机全机动力学有限元模型为基础,建立带飞行控制律的飞机气动伺服弹性模型,通过副翼、升降舵和方向舵的激励分别实现对飞机的激励响应仿真,得到飞机结构响应量值。为进一步验证该方法的可行性,进行某民用飞机副翼脉冲激励响应仿真,并将仿真响应结果与试飞结果对比,响应幅值相差15.3%,满足工程要求。民用飞机气动伺服弹性试飞仿真很好地预测试飞激励的飞机响应,为试飞激励信号的优化以及结构响应的评估提供技术参考。


Research of response simulation in civil aircraft aeroservoelastic flight test excitation
LEI Ming1, YANG Fei2, HUO Xingli1
1. Chinese Flight Test Establishment, Xi'an 710089, China;
2. Shanghai Aircraft Design and Research Institute of COMAC, Shanghai 200232, China
Abstract: In order to improve the simulation and prediction ability and realize an efficient and safe aeroservoelastic flight test for civil aircraft. On the basis of the aeroservoelastic flight test method of civil aircraft, the simulation method of civil aircraft aeroservoelastic flight test excitation response is presented. The aeroservoelastic model of aircraft with flight control law is established on the basis of the finite element model of civil aircraft full machine dynamics. The response simulation of aircraft is realized by the excitation of the aileron, elevator and rudder, and the response value of the aircraft structure is obtained. In order to further verify the feasibility of this method, the response simulation of a civil aircraft aileron impulse excitation is carried out, and the simulation response results are compared with the results of flight test. The difference of response amplitude is 15.3%, which satisfies the engineering requirements. The aeroservoelastic test flight simulation of civil aircraft has well predicted the response of the aircraft excitation during the flight test, which provides an technical method for the optimization of the test flight excitation signal and the evaluation of the structural response.
Keywords: civil aircraft;aeroservoelastic;flight test;excitation response;simulation
2019, 45(6):146-152  收稿日期: 2018-07-07;收到修改稿日期: 2018-08-12
基金项目:
作者简介: 雷鸣(1987-),男,陕西西安市人,工程师,硕士,主要从事飞行结构动力学研究
参考文献
[1] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4):1011-1033
[2] 吴森堂, 费玉华. 飞行控制系统[M]. 北京:北京航空航天大学出版社, 2009:139-144.
[3] LAWRENCE J, HUTTSELL R D, KROBUSEK, HOWARD L, FARMER. Application of three aeroservoelastic stability analysis techniques[R]. AFFDL, 1976.
[4] ARTHURS T D, GALLAGHER J T. Interaction between control augmentation system and airframe dynamic on the YF-17[C]//16th Structural Dynamics, and Materials Conference. AIAA, 1975.
[5] PELOUBET R P. YF-16 active control system/structural dynamic interaction instability[C]//16th Structural Dynamics, and Materials Conference. AIAA, 1975.
[6] LOTZE A, SENSBURG O, KUHN M. Flutter investigation of a Combat aircraft with a command and stability augmentation system[J]. Journal of Aircraft, 1976, 14(4):368-374.
[7] BRENNER M J. Aeroservoelastic modeling and validation of thrust vectoring f/a-18 aircraft[R]. NASA, 1996.
[8] THOMPSON P M, KLYDE D H, FARHAT C, et al. Aeroservoelastic predictive analysis capability[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. AIAA, 2007.
[9] MUKHOPADHYAY V. Flutter suppression control law design and testing for the active flexible wing[J]. Journal of Aircraft, 1995, 32(1):45-51
[10] RODDEN W P, HARDERARDE. Aeroelastic addition to NASTRAN[R]. NASA,3094.