登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页>《中国测试》期刊>本期导读>液压油质特性对火箭炮高低调炮影响仿真研究

液压油质特性对火箭炮高低调炮影响仿真研究

83    2019-06-26

¥0.00

全文售价

作者:徐桐, 曹立军, 马万鹏

作者单位:陆军工程大学石家庄校区火炮工程系, 河北 石家庄 050003


关键词:液压油;机电液耦合;油温;含气量;堵塞


摘要:

为研究液压油质特性变化对火箭炮高低调炮的影响,以某火箭炮高低随动系统为研究对象,基于MSC.ADAMS、EASY5仿真软件建立高低随动装置机电液耦合动力学模型,并通过对比试验与仿真结果验证模型的可信性。在此基础上,重点分析液压油温与含气量对火箭炮高低调炮的影响,同时针对液压油污染导致的过滤器堵塞故障进行仿真分析。结果表明:液压油温与含气量对火箭炮高低调炮的影响不能忽略,过滤器堵塞故障隐蔽性较强不易察觉,通过改变液压油质特性进行仿真可以获得较完善的知识与样本,为火箭炮液压系统故障诊断与维修保障提供参考。


Simulation research on influence of hydraulic oil properties on rocket's high and low regulation
XU Tong, CAO Lijun, MA Wanpeng
Artillery Engineering Department, Army Engineering University Shijiazhuang Campus, Shijiazhuang 050003, China
Abstract: In order to study the influence of the change of hydraulic oil quality on the launcher's high and low level gun movement, a rocket-gun rocket high-low servo system was taken as the research object. Based on the MSC. ADAMS and EASY5 simulation software, the electromechanical-hydraulic coupling dynamic model of the high and low servo device was established. The comparison test and simulation results verify the credibility of the model. On this basis, the influence of hydraulic oil temperature and gas content on the action of rocket launchers was analyzed. At the same time, the filter blocking failure caused by hydraulic oil pollution was simulated and analyzed. The results show that the influence of hydraulic oil temperature and gas content on the level of rocket launcher can't be neglected, and the concealed fault of filter blocking is not easy to be noticed. By changing the characteristics of hydraulic oil, simulation can obtain more complete knowledge and samples, and provides a reference for the fault diagnosis and maintenance support of the rocket hydraulic system.
Keywords: hydraulic oil;electromechanical-hydraulic coupling;oil temperature;gas content;blocking
2019, 45(6):153-160  收稿日期: 2018-04-04;收到修改稿日期: 2018-05-21
基金项目: 国家自然科学基金(51575523)
作者简介: 徐桐(1994-),男,甘肃秦安县人,硕士研究生,专业方向为武器系统仿真与虚拟样机技术
参考文献
[1] 邓辉咏, 马吉胜, 刘海平. 履带式自行火炮发射动力学建模仿真研究[J]. 机械科学与技术, 2012, 31(4):543-546
[2] 王荣林, 殷劲松. 基于液压油油温对液压系统性能影响的研究[J]. 中国科技信息, 2008(24):104
[3] 李伟, 赵智姝, 李映红, 等. 液压油温度变化对供料机性能影响仿真研究[J]. 机床与液压, 2015(2):103-105
[4] 郭勇, 彭勇, 过新华, 等. 运用ADAMS和AMESim联合仿真的LUDV液压系统动态特性分析[J]. 现代制造工程, 2010(7):30-34
[5] 印寅, 聂宏, 魏小辉, 等. 多因素影响下的起落架收放系统性能分析[J]. 北京航空航天大学学报, 2015, 41(5):953-960
[6] 潘陆原. 高压液压系统的研究[D]. 北京:北京航空航天大学, 2000.
[7] 李曼, 屈江民. 液压支架中电液换向阀内泄漏的仿真研究[J]. 液压与气动, 2017(1):49-54
[8] 周小军. 基于AMESim液压系统泄漏仿真与故障诊断研究[D]. 长沙:国防科学技术大学, 2012.
[9] 余正根, 李春旭. 液压油对液压系统工作影响的分析[J]. 农业与技术, 2009, 29(3):179-181
[10] 葛芦生, 陶永华. 新型PID控制及其应用[J]. 工业仪表与自动化装置, 1998(1):55-59
[11] 王勇亮, 卢颖, 赵振鹏, 等. 液压仿真软件的现状及发展趋势[J]. 液压与气动, 2012(8):1-4
[12] OKCUOGLU M, FRIEDMAN K. Consideration of vehiclehandling and stability with improved roof strength[J]. Inter-national Journal of Crashworthiness, 2007, 12(5):541-547
[13] NAKATEN B. Virtual elements for representation of faults, cracks and hydraulic fractures in dynamic flow simulation[J]. Energy Procedia, 2013, 40:35-37
[14] 姜佩东. 液压与气动技术[M]. 北京:高等教育出版社, 2005:126-130.
[15] 吴卫峰. 液压油对液压系统副作用分析[J]. 机械研究与应用, 2008, 21(3):48-49