您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>大量程在线式粉尘浓度监测系统设计

大量程在线式粉尘浓度监测系统设计

3053    2019-04-28

免费

全文售价

作者:赵欣然1,2, 李群1, 王卫东1, 徐志强1, 鲁恒润1

作者单位:1. 中国矿业大学(北京)化学与环境工程学院, 北京 100083;
2. 中国安全生产科学研究院 重大危险源监控与事故调查分析鉴定技术中心, 北京 100012


关键词:粉尘浓度;在线监测;透射法;全反射;STM32


摘要:

针对高浓度可燃性粉尘存在爆炸的风险,该文基于光透射原理设计一套大量程在线式粉尘浓度监测系统,通过对透射光信号的采集反演出粉尘的浓度信息。系统整体包含6个单元模块,实现对信号的采集、转换、显示和控制,其中单片机选用性能优越的STM32,上位机程序采用NI公司的虚拟仪器软件LabVIEW进行设计。采用全反射的方式将测量激光束进行反射,解决传统光透射法由于光程长而导致测量距离长的问题,有效缩短仪器长度,扩大适用范围。与固定容积的标定装置进行比对,结果表明该监测系统能够对10~100 g/m3粉尘浓度范围进行有效监测,量程内绝对误差最大为-4.2 g/m3


Design of on-line monitoring system for dust concentration with large range
ZHAO Xinran1,2, LI Qun1, WANG Weidong1, XU Zhiqiang1, LU Hengrun1
"1. School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
2. Center for Major Hazards Installation Monitoring and Control, Accident Investigation and Identification, China Academy of Safety Science and Technology, Beijing 100012, China
Abstract: In order to monitor the concentration of flammable dust. An on-line monitoring system of dust concentration with large range based on transmission method was researched and developed, which calculate dust concentration by detecting the transmitted light intensity. The system contains six modules to achieve signal acquisition, conversion, display and control. In this system selects STM32 as main controller, and applies virtual instrument software LabVIEW as the upper software designing platform. Using all reflective parts, the length of instrument has been shorten nearly half. The experiment proves that system can measure the dust concentration in time, which range is 10 -100 g/m3 and absolute error is below -4.2 g/m3.
Keywords: dust concentration;on-line monitoring;transmission method;all reflective;STM32
2019, 45(4):80-84,128  收稿日期: 2018-04-05;收到修改稿日期: 2018-05-23
基金项目: 国家自然科学基金面上资助项目(51574251)
作者简介: 赵欣然(1971-),男,山东蓬莱市人,高级工程师,博士,主要从事重大危险源安全管理与监控预警等方面的研究
参考文献
[1] 周从章, 张瑞萍, 于永芳. 关于粉尘云爆炸下限浓度的讨论[J]. 中国安全科学学报, 1995(3):39-42
[2] 蒋玉华, 黄曙光. 煤矿用流量计检定装置的设计[J]. 工矿自动化, 2011, 37(2):71-74
[3] 郑凯, 汪金刚, 刘静, 等. 基于电荷感应的粉尘浓度检测技术与试验研究[J]. 传感器与微系统, 2014, 33(2):29-31
[4] 李宗伦, 赵修良, 彭丽婧, 等. β射线粉尘测量仪在煤矿粉尘浓度监测中的应用[J]. 中国煤炭, 2010, 36(3):65-67
[5] DENG X Y, NI X C, WANG B, et al. The experimental study on detection of dust concentration by back scattering method[J]. Advanced Materials Research, 2013, 753-755(Sept):2400-2403
[6] 陈建阁, 吴付祥, 王杰. 电荷感应法粉尘浓度检测技术[J]. 煤炭学报, 2015, 40(3):713-718
[7] 李静, 司瑾, 王泽民. 电容法测量工业粉尘浓度技术研究[J]. 电子科技, 2016, 29(2):148-151
[8] YU X, SHI Y, WANG T, et al. Dust-concentration measurement based on Mie scattering of a laser beam[J]. Plos One, 2017, 12(8):e0181575
[9] 张珊珊, 雷志勇. 基于光散射与透射原理的粉尘浓度测量方法研究[J]. 计算机与数字工程, 2016, 44(2):362-366
[10] RONG-BIN Y U, ZHENG-JIANG H E, YONG-CHANG Y U. Improvement of dust concentration measurement accuracy in extinction method with scattered light information[J]. Opto-electronic Engineering, 2002, 29(1):52-54
[11] XING J, LIU X. Research on system for dust concentration measuring calibration method based on light transmission[C]//Advanced Information Management, Communicates, Electronic and Automation Control Conference. IEEE, 2017:1878-1881.
[12] HUSAIN I, CHOUDHURY A, NATH P. Fiber-optic volumetric sensor based on beer-lambert principle[J]. IEEE Sensors Journal, 2013, 13(9):3345-3346
[13] 王国梁. 半导体激光器驱动电路设计[D]. 天津:天津工业大学, 2017.
[14] 李红刚, 张素萍. 基于单片机和LabVIEW的多路数据采集系统设计[J]. 国外电子测量技术, 2014, 33(4):62-67