您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>剪切条件下油水乳状液含水率测量装置的设计

剪切条件下油水乳状液含水率测量装置的设计

3200    2019-01-30

免费

全文售价

作者:青美伊, 梁华庆, 袁月

作者单位:中国石油大学(北京)信息科学与工程学院, 北京 102249


关键词:含水率;油水乳状液;复阻抗;剪切条件


摘要:

针对传统油水乳状液含水率测量装置的准确性低、成本高、无法实现动态测量的问题,设计一种剪切条件下乳状液含水率的测量装置。系统利用油水两相的介电及电导特性的差异性,采用交流阻抗法测量待测乳状液的复阻抗参数,从而获得乳状液的含水率特征。结合搅拌装置模拟油水乳状液在运输环境下的剪切环境,间接实现油水乳状液的动态测量。实验测试表明:装置具有良好的重复性和稳定性,可实现剪切条件下对乳状液复阻抗参数的测量,证明乳状液的阻抗参数与含水率存在明显的线性关系,对进一步研究管道中油水两相的流动性质具有一定的参考价值。


Design of water-content testing device for oil-water emulsions under shear conditions
QING Meiyi, LIANG Huaqing, YUAN Yue
College of Information Science and Engineering, China University of Petroleum, Beijing 102249, China
Abstract: A water-content testing device for oil-water emulsions is designed to solve the problems of the traditional water content measuring instrument with low measurement accuracy, high cost and infeasible of dynamic measurement. It adopts the impedance spectroscopy technology to get the complex impedance parameters of the unknown emulsion, which can obtain the information of water content based on the difference of the permittivity and conductivity of water and oil phase. The device applies the stirring system to simulate the shear force in transportation environment, realizing the dynamic measurement of oil-water emulsion. The experimental results show good repeatability and stability of the testing device. The device realizes the measurement of the impedance of the oil-water emulsions under the shear conditions and obtains the linear relationship between the water content and the impedance parameter. It has reference value to the study of the properties of oil-water two-phase flow in pipelines.
Keywords: water content;oil-water emulsions;complex impedance;shear conditions
2019, 45(1):99-106  收稿日期: 2018-07-03;收到修改稿日期: 2018-09-05
基金项目: 国家自然科学基金重点项目(51534007,51134006)
作者简介: 青美伊(1991-),女,吉林省吉林市人,博士,主要从事检测技术与自动化装置方面的研究
参考文献
[1] WONG S F, LIM J S, DOL S S. Crude oil emulsion:A review on formation, classification and stability of water-in-oil emulsions[J]. Journal of Petroleum Science & Engineering, 2015, 135:498-504
[2] XU B, KANG W, WANG X, et al. Influence of water content and temperature on stability of W/O crude oil emulsion[J]. Liquid Fuels Technology, 2013, 31(10):1099-1108
[3] YANG F, TCHOUKOV P, PENSINI E, et al. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 1:interfacial behaviors[J]. Energy & Fuels, 2014, 28(11):6897-6904
[4] YUSUF N, AL-WAHAIBI Y, AL-WAHAIBI T, et al. Effect of oil viscosity on the flow structure and pressure gradient in horizontal oil-water flow[J]. Chemical Engineering Research and Design, 2012, 90(8):1019-1030
[5] 苗杰, 龙军, 任强, 等. 沥青质对原油乳状液的影响研究进展[J]. 石油化工, 2017, 46(10):1337-1342
[6] SJÖBLOM J. Emulsions-A fundamental and practical approach[M]. Norway:Springer Netherlands, 1992:1-24.
[7] ASLAM M Z, TANG T B. A high resolution capacitive sensing system for the measurement of water content in crude oil[J]. Sensors, 2014, 14:11351-11361
[8] BORGES G R. Use of near infrared for evaluation of droplet size distribution and water content in water-in-crude oil emulsions in pressurized pipeline[J]. Fuel, 2015, 147:43-52
[9] LU Z Q, YANG X, ZHAO K. Non-contact measurement of the water content in crude oil with all-optical detection[J]. Energy Fuels, 2015, 29:2919-2922
[10] SONG Y. Simultaneous characterization of water content and distribution in high-water-cut crude oil[J]. Energy Fuels, 2016, 30:3929-3933
[11] 高晓丁, 高鹏, 王旭. 基于多极板电容传感器测量原油含水率的研究[J]. 中国测试, 2008, 34(2):6-8
[12] 李清玲, 彭军, 唐德东, 等. 原油含水率测量技术综述[J]. 重庆科技学院学报(自然科学版), 2014, 16(5):89-92
[13] 梁灿彬, 秦广戎, 梁竹建. 电磁学[M]. 北京:高等教育出版社, 1988:3-9, 133-137.
[14] 陈鸿, 来跃深, 仝毅杰, 等. 原油含水率指数对数电容检测模型及误差分析[J]. 西安工业大学学报, 2017, 37(12):870-875