登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页>《中国测试》期刊>本期导读>交流电沉积原位制备Au/Cu双金属SERS探测器

交流电沉积原位制备Au/Cu双金属SERS探测器

1330    2018-11-29

¥0.50

全文售价

作者:申治中1, 李芒芒1, 王红旺1, 禚凯1, 张强1, 袁仲云1, 张虎林1, 冀健龙1,2, 桑胜波1, 张文栋1

作者单位:1. 太原理工大学信息工程学院微纳系统研究中心, 山西 太原 030024;
2. 山西省高端煤矿装备协同创新中心, 山西 太原 030024


关键词:表面增强拉曼散射;交流电沉积;金;铜;枝晶


摘要:

为进一步提高拉曼探测器的检测灵敏度、降低制备成本,使用交流电沉积法在预定的微区域内制备Au/Cu双金属纳米枝晶作为表面增强拉曼散射(surface-enhanced Raman scattering,SERS)基底。通过调节电解液中金、铜离子的浓度配比,制备不同金、铜质量比的SERS基底。以四巯基吡啶作为指针分子,进行激光共焦显微拉曼实验。结果表明:Au/Cu双金属纳米枝晶性能优于单独Au纳米枝晶与Cu纳米枝晶,且铜质量占比为30.1%的双金属SERS基底相比质量占比为13.2%、44.3%的基底具有更高的拉曼活性。从物理增强机理的角度,揭示增强性能与形貌特征的关系,即纳米枝晶分支分布越密集,性能越好。


In-Situ preparation of Au/Cu bimetallic SERS detector by alternating current electrodeposition

SHEN Zhizhong1, LI Mangmang1, WANG Hongwang1, ZHUO Kai1, ZHANG Qiang1, YUAN Zhongyun1, ZHANG Hulin1, JI Jianlong1,2, SANG Shengbo1, ZHANG Wendong1

1. Micro and Nano-system Research Center, College of Information Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2. High-end coal mine equipment collaborative innovation center of Shanxi Province, Taiyuan 030024, China

Abstract: In order to improve the detection sensitivity and reduce the preparation cost of Raman detector, Au/Cu bimetallic nano-dendrites are prepared as the surface-enhanced Raman scattering (SERS) substrates in a predetermined micro-area using AC electrodeposition. SERS substrates with different gold and copper mass ratios are prepared by adjusting the concentration of gold and copper ions in the electrolyte. 4-mercaptopyridine is taken as the pointer moleculars to have a laser confocal microscopy Raman experiment. Results show that performance of Au/Cu bimetallic nano-dendrites is better than Au nanocrystalline dendrites or Cu nanocrystalline dendrites. In detail, SERS substrates with mass ratio of 30.1% copper exhibit better Raman activity than that with a copper mass ratio of 13.2% and 44.3%. The relationship between the enhanced performance and the morphology is revealed from the physical enhancement mechanism, which show that, denser the branch distribution of the nano dendrites is, better enhancing performance will be.

Keywords: SERS;AC electrodeposition;Au;Cu;dendrite

2018, 44(6): 78-82  收稿日期: 2017-12-30;收到修改稿日期: 2018-02-28

基金项目: 国家自然科学基金重点支持项目(51705354,61474079,61471255);国家863项目(2015AA042601);山西省基础研究计划项目(2015021092)

作者简介: 申治中(1993-),男,山西临汾市人,硕士研究生,专业方向为电子科学与技术。

参考文献

[1] 丁家坚, 杨兰英, 陈桂兰, 等. 基于微流控-SERS的基底银溶胶团聚动力学分析[J]. 中国测试, 2017, 43(5):36-39.
[2] HERING K, CIALLA D, ACKERMANN K, et al. SERS:a versatile tool in chemical and biochemical diagnostics[J]. Analytical & Bioanalytical Chemistry, 2008, 390(1):113-24.
[3] CHANG C C, YANG K H, LIU Y C, et al. Surface-enhanced Raman scattering-active silver nanostructures with two domains.[J]. Analytica Chimica Acta, 2012, 709(2):91-97.
[4] NI H, WANG M, SHEN T, et al. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing[J]. Acs Nano, 2015, 9(2):1913-25.
[5] NIAUZORAU S, GIREL K, KASHKO I, et al. Silicon nanowires formed by metal-assisted chemical etching as templates for SERS-active substrates[C]//Porous Semiconductors-Science and Technology, 2016.
[6] KNEIPP K, KNEIPP H, ITZKAN I, et al. Surface-enhanced Raman scattering and biophysics[J]. Journal of Physics Condensed Matter, 2002, 14(18):R597.
[7] 陆冬莲, 韩鹤友, 梁建功. 基于银镜的高灵敏表面增强拉曼光谱基底制备及其用于呋喃唑酮检测[J]. 分析化学, 2010, 38(5):715-718.
[8] 王延凯. 新型SERS基底的制备及其性能研究[D]. 南京:南京理工大学, 2012.
[9] 冀健龙, 杨兴, 周兆英, 等. 交流电沉积制备纳米枝晶拉曼基底[J]. 传感器与微系统, 2014, 33(11):16-18.
[10] JI J, LI P, SANG S, et al. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow[J]. Aip Advances, 2014, 4(3):5344-5348.
[11] JI J, ZHOU Z, YANG X, et al. One-dimensional nano-interconnection formation[J]. Small, 2013, 9(18):3014.
[12] SHANKAR S S, RAI A, AHMAD A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.[J]. Journal of Colloid & Interface Science, 2004, 275(2):496-502.
[13] 阚义德, 刘文今, 钟敏霖, 等. 脱合金法制备纳米多孔金属的研究进展[J]. 金属热处理, 2008, 33(3):43-46.
[14] 阮伟东, 毛竹, 王春旭, 等. 适合大分子检测的多孔结构SERS基底的制备[C]//全国光散射学术会议, 2009.
[15] AN C Y, ZHUO K, KIM W J, et al. A dendritic palladium electrode for a hydrogen peroxide sensor fabricated by electrodeposition on a dynamic hydrogen-bubble template and dealloying[J]. Sensors & Actuators B Chemical, 2015, 213:329-333.
[16] BAZANT M Z, SQUIRES T M. Induced-charge electrokinetic phenomena:theory and microfluidic applications.[J]. Physical Review Letters, 2004, 92(6):066101.
[17] CHENT, WANG H, CHENG, et al. Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints[J]. Acs Nano, 2010, 4(6):3087-94.
[18] 冀健龙. 交流电沉积金纳米材料及其性能研究[D].太原:太原理工大学, 2014.
[19] 吴元菲, 李明雪, 张檬, 等. 对巯基吡啶在纳米银上的SERS化学增强机理[J]. 光谱学与光谱分析, 2016(s1):343-344.
[20] 崔颜, 任斌, 葛明, 等. Ag核Au壳复合纳米粒子SERS增强机理研究[C]//全国分子光谱学学术会议, 2006.