您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>Rossini型气体热量计非稳态温度场的优化分析

Rossini型气体热量计非稳态温度场的优化分析

3043    2017-09-08

免费

全文售价

作者:杜军燕, 王玉刚, 潘江, 张洪军

作者单位:中国计量大学计量测试工程学院, 浙江 杭州 310018


关键词:Rossini型气体热量计;标准k-ε湍流模型;非稳态温度场;数值模拟


摘要:

为优化Rossini型气体热量计温度场均匀性以减小测量不确定度,采用多重参考系法(MRF)和标准k-湍流模型对Rossini型气体热量计的温度场进行三维瞬态数值模拟,分别得到搅拌器转速、燃烧室高度对量热容器内非稳态温度场的影响,特别是对燃烧室与吸热介质之间热传递的影响以及对吸热介质温度均匀性的影响,同时确定温度传感器的最佳安装位置。结果表明:搅拌器桨叶最佳转速为420 r/min,这时燃烧室壁面与吸热介质之间的传热效率最大,并且吸热介质内监测点温度的标准偏差保持在1.5 mK以内。燃烧室高度减小可以提高吸热介质的温度均匀性,加热阶段中,燃烧室高度从180 mm降低到140 mm时,监测点温度的标准偏差从26 mK降低到7.5 mK。温度传感器的最佳安装位置在燃烧室对称轴及导流筒对称轴的等距线上离壳体底部25 mm处。


Numerical simulation of unsteady temperature field in Rossini gas calorimeter

DU Junyan, WANG Yugang, PAN Jiang, ZHANG Hongjun

College of Metrology and Measurement, China Jiliang University, Hangzhou 310018, China

Abstract: In order to optimize the temperature field uniformity of Rossini gas calorimeter to minimize the measurement uncertainty, 3D transient numerical simulation was carried out for temperature field of Rossini gas calorimeter based on MRF model and standard k-ε turbulence model, and the influence of rotational speed and the combustion chamber height on unsteady temperature field in calorimeter vessel was also obtained, especially the influence on heat transfer between combustion chamber and heat transfer medium. Meanwhile, the best installation location of temperature sensor was also determined. The results indicate that rotational speed of 420 r/min can be regarded as the optimal rotational speed of stirrer paddle, the heat transfer between combustion chamber wall surface and heat transfer medium is maximum at this time, the standard deviation of the temperature at the monitoring point of heat transfer medium is within 1.5 mK. Reduction of the height of the combustion chamber can improve the temperature homogeneity of the heat transfer medium. At the heating stage, the standard deviation of temperature at the monitoring points is reduced from 26 mK to 7.5 mK when the combustion chamber height is reduced from 180 mm to 140 mm. The optimum installation position of the temperature sensor is 25 mm to the bottom of shell, on the equidistant line of the symmetry axis of combustion chamber and guide cylinder.

Keywords: Rossini gas calorimeter;standard k-ε turbulence model;unsteady temperature field;numerical simulation

2017, 43(8): 119-124  收稿日期: 2016-11-05;收到修改稿日期: 2017-01-13

基金项目: 国家质检公益性行业科研专项项目(201410133)

作者简介: 杜军燕(1992-),女,江西吉安市人,硕士研究生,专业方向为能源计量。

参考文献

[1] JAESCHKE M, SCHMÜCKER A, PRAMANN A, et al. GERG Project:Development and setup of a new combustion reference calorimeter for natural gases[J]. International Journal of Thermophysics,2007,28(1):220-244.
[2] VILLERMAUX C, ZARÉA M, HALOUA F, et al. Me-asurements of gas calorific value:a new frontier to be reached with an optimised reference gas calorimeter[C]//23rd world gas conference. Amsterdam:International gas Union,2006.
[3] ROSSINI F D. The heat of formation of water[J]. Proceedings of the National Academy of Sciences,1930,16(11):694-699.
[4] PITTAM D A, PILCHER G. Measurements of heats of combustion by flame calorimetry. part 8. -Methane ethane propane n-butane and 2-methylpropane[J]. Journal of the Chemical Society, Faraday Transaction 1:Physical Chemistry in Condensed Phases,1972(68):2224-2229.
[5] DALE A, LYTHALL C, AUCOTT J, et al. High precision calorimetry to determine the enthalpy of combustion of methane[J]. Thermochimica Acta,2002,382(1):47-54.
[6] JAESCHKE M, BENITO S A, CREMONESI P L, et al. GERG Project:Development and set-up of a new reference calorimeter[J]. Gartenbauwissens-Chaft, 2004, 54(4):179-184.
[7] HALOUA F, HAY B, FILTZ J R. New french reference calorimeter for gas calorific value measurements[J]. Journal of Thermal Analysis and Calorimetry,2009,97(2):673-678.
[8] HALOUA F, PONSARD J N, LARTIGUE G, et al. Thermal behaviour modelling of a reference calorimeter for natural gas[J]. International Journal of Thermal Sciences,2012,55(3):40-47.
[9] SCHLEY P, BECK M, UHRIG M, et al. Measurements of the calorific value of methane with the new GERG reference calorimeter[J]. International Journal of Thermophysics,2010,31(4):665-679.
[10] HALOUA F, FOULON E, ALLARD A, et al. Traceable measurement and uncertainty analysis of the gross calorific value of methane determined by isoperibolic calorimetry[J]. Metrologia,2015,52(6):741-755.
[11] 胡日恒,安绪武,谈夫. 精密氧弹量热计及苯甲酸燃烧热的测定[J]. 化学学报,1981(增刊1):18-26.
[12] 苏毅,骆科东. 我国天然气流量计量技术现状及发展趋势分析[J]. 石油仪器,2015(5):8-12.
[13] 王海峰,李佳,孙国华,等. 基准气体热量计研究进展[J]. 石油与天然气化工,2014(2):196-199.
[14] 李克,潘春锋,张宇,等. 天然气发热量直接测量及赋值技术[J]. 石油与天然气化工,2013,42(3):297-301.
[15] 吕丹妮,张洪军,韩伟栋. Rossini型气体热值测量装置中的几个关键技术[J]. 仪器仪表学报,2014,35(12):151-154.