您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于LabVIEW的GMI效应多参数测量系统

基于LabVIEW的GMI效应多参数测量系统

2656    2016-03-08

免费

全文售价

作者:彭景

作者单位:中国地质大学(武汉)自动化学院, 湖北 武汉 430074


关键词:巨磁阻抗效应;LabVIEW;多参数;自平衡电桥法;幅角值


摘要:

采用自动平衡电桥法,测量产生巨磁阻抗效应时软磁材料的阻抗和幅角值。利用直流电源、亥姆霍兹线圈、阻抗分析仪等仪器搭建一套巨磁阻抗多参数测量系统,并采用虚拟仪器技术对测量系统进行编程控制。通过对商用Vitrovac6025带材进行测量实验,发现材料在不同频率下均表现出很强的巨磁阻抗效应;并且材料的巨磁阻抗效应随频率的增大先增大再减小,在5 MHz达到最大160%;同时,发现材料的幅角也随磁场变化表现出与阻抗类似的变化规律。实验结果表明该测量系统具有较高的准确性与高效性。


LabVIEW-based GMI effect multi-parameter measurement system

PENG Jing

School of Automation, China University of Geosciences, Wuhan 430074, China

Abstract: Automatic bridge balance was used to measure the impedance and argument of soft magnetic materials when Giant Magneto-Impedance(GMI) effect was generated. A GMI measurement system was formed by DC power supply, Helmholtz coils, an impedance analyzer and other instruments and programmed by virtual instrument technology. According to the tests on commercial ribbons Vitrovac6025, found that the magnetic materials exhibited high GMI effects, which first increased and then decreased with the frequency and reached the maximum (160%) at 5 MHz. The arguments of these materials were seen varying with the magnetic field at the same pace as the impedance. The experimental results have proved the accuracy and efficiency of the system.

Keywords: giant magneto-impedance;LabVIEW;multi-parameter;automatic bridge balance method;argument

2016, 42(2): 88-91  收稿日期: 2015-5-29;收到修改稿日期: 2015-7-2

基金项目: 

作者简介: 彭 景(1990-),男,湖北天门市人,硕士研究生,专业方向为磁传感器的模拟与研制。

参考文献

[1] MOHRI K, KOHZAWA T, KAWASHIMA K. Magneto-inductive effect(MI effect) Amorphous Wires[J]. IEEE Tran Magn,1992,28(5):3150.
[2] MOHRI K. Application of amorphous magnetic wires to computer peripherals[J]. Materials Science and Engineering: A,1994,185(1):141-145.
[3] MOHRI K, SHEN L P, CAI C M, et al. Amorphous Wire and CMOS IC-Based Sensitive Micromagnetic Sensors Utilizing Magneto-impedance(MI) and Stress-Impedance(SI) Effects[J]. IEEE Trans Magn,2002,38(5):3063-3068.
[4] 郭成锐,江建军,邸永江. 基于虚拟仪器技术的巨磁阻抗测量系统[J]. 电测与仪表,2006(7):12-14.
[5] 杨介信,沈国土,陈国,等. 巨磁阻抗测量系统[J]. 华东师范大学学报,1997(3):45-47.
[6] CIUREANU P, RUDKOWSKI P, RUDKOWSKA G, et al. Giant magnetoimpedance effect in soft and ultrasoft magnetic fibers[J]. Journal of Applied Physics,1996,79(8):5136.
[7] 蒋峰,鲍丙,闻凤连. 激励电流对CoFeSiB非晶带GMI效应的影响[J]. 电子元件与材料,2009,28(2):35-37.
[8] SILVA E C, BARBOSA C R Hall, GUSMÃO L A P, et al. Point matching: A new electronic method for homogenizing the phase characteristics of giant magnetoimpedance sensors[J]. Review of Scientific Instruments,2014,85(8):084708.
[9] 李建伟,于广华,滕蛟. 磁电阻薄膜材料噪声研究进展[J]. 磁性材料及器件,2012(4):7-13.
[10] 张毅刚. 虚拟仪器技术介绍[J]. 国外电子测量技术,2006(6):1-6.
[11] 郝建华,郑全普,胡然,等. 基于GMI效应的磁传感器研究与发展现状[J]. 国外电子测量技术,2011,30(4):20-26.
[12] KURLYANDSKAYA G V, PRIDA V M, HERNANDO B, et al. GMI sensitive element based on commercial VitrovacR amorphous ribbon[J]. Sensors and Actuators A: Physical,2004,110(1):228-231.