您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>漂浮式风电机组的载荷优化控制及其先进监测技术研究

漂浮式风电机组的载荷优化控制及其先进监测技术研究

2537    2016-01-22

免费

全文售价

作者:赵麟, 李盛善, 朱斌, 王磊

作者单位:电子科技大学能源科学与工程学院, 四川成都 611731


关键词:海上风力发电; 漂浮式; 独立变桨; 载荷优化; 单神经元自适应PI控制器; 监测;


摘要:

针对大型漂浮式海上风力发电机组运行过程中叶根处存在有较大的载荷和平台摇动等问题,根据现有的漂浮式平台模型、独立变桨控制算法和控制策略,在输出功率稳定的情况下,在PI协同变桨的控制基础加上,采用叶根处的载荷控制信号和平台摇动角度的控制信号的方法来实现风力发电机组的优化控制。为验证控制器的可行性,通过美国可再生能源实验室的FAST和MCrunch软件进行仿真,将结果与统一变桨的结果进行对比后,采用先进监测与控制方法有效性,可为今后开展样机控制器的测试提供一种思路。


Study of floating wind turbine load optimization control and advanced monitoring

ZHAO Lin, LI Sheng-shan, ZHU Bin, WANG Lei

School of Energy Science and Engineering, University of Electronic Science and Technology, Chengdu 611731, China

Abstract: For large floating offshore wind turbine blade root exists larger load and platform shaking and other issues during operation, according to the existing floating platform model, independent pitch control algorithms and control strategies,in the output power stability case,by the PI control based collaborative plus pitch at the blade root load control signal and platform rocking angle control signal to achieve optimal control of wind turbines, which the blade root floating platform load control and displacement control signal and the input signal were obtained through an improved single neuron adaptive PI controller and the coordinate transform. In order to verify the feasibility of the controller,by the FAST,MCrunch software simulation in the U.S. Energy Laboratory,comparing the results with uniform pitch, the results show that under the stability of the output power circumstances,the method presented is effective which can show a new idea to test controller of prototype.

Keywords: offshore wind turbine; floating; individual blade pitch; load optimization; single neuron adaptive PI controller; monitoring

2014, 40(6): 108-112  收稿日期: 2014-2-15;收到修改稿日期: 2014-4-7

基金项目: 

作者简介: 赵麟(1983-),女,四川攀枝花市人,助理工程师,硕士,主要从事能源方面的工作。

参考文献

[1] World wind energy report 2012[R]. World Wind Energy Association WWEA,2013.
[2] 应有,许国东. 大型风电机组独立变桨控制技术研究[J]. 太阳能学报,2011,32(6):891-896.
[3] 高汝英. 大型风力发电机组独立变桨距控制[D]. 天津:天津大学,2009.
[4] 邢作霞,陈雷. 独立变桨距控制策略研究[J]. 中国电机工程学报,2011,31(26):131-138.
[5] 郑宇. 基于神经元PID的风力发电机组独立变桨控制[J]. 水电能源科学,2012,30(2):151-154.
[6] Guo H C, Lu X P. Research on pitch control of floating offshore wind turbines[C]//Fuzzy Systems and Knowledge Discovery (FSKD),20129th International Conference on. IEEE,2012:2966-2970.
[7] Camblong H, Nourdine S, Vechiu I, et al. Comparison of an island wind turbine collective and individual pitch LQG controllers designed to alleviate fatigue loads[J]. Renewable Power Generation,2012,6(4):267-275.
[8] Laesen T J, Hanson T D. A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine[C]//Journal of Physics:Conference Series. IOP Publishing,2007,75(1):012073.
[9] Van E T. Control design based on aero-hydro-servoelastic linear models from TURBU(ECN)[C]//Proceeding of the European Wind Energy Conference.Milan,2007.
[10] Bossanyi E A. Wind turbine control for load reduction[J]. Wind Energy,2003,6(3):229-244.
[11] Stol K A. Dynamics modeling and periodic control of horizontal-axis wind turbine[M]. University of Colorado, 2001:72-80.
[12] Stol K, Zhao W, Wright A D. Individual blade pitch control for the controls advanced research turbine[J]. Journal of Solar Energy Engineering, Transactions of the ASME,2006,128(4):498.
[13] Jonkman J M. Dynamics modeling and loads analysis of offshore floating wind turbine[R]. Golden, Colorado:National Renewable Energy Laboratory,2007.
[14] Jonkman J. Fast theory manual[R]. NREL/TP-500-32449. Golden,CO:National Renewable Energy Laboratory,2009.
[15] Jonkman B J. Turbsim user's guide:Version 1.50[M]. Colorado:National Renewable Energy Laboratory,2009:35-43.
[16] Buhl M. MCrunch theory manual for version 1.00[R]. NREL/TP-500.Golden,CO:National Renewable Energy Laboratory,2009.