您好,欢迎来到中国测试科技资讯平台!

基于无监督深度估计的带雾图像生成方法

摘要:

摘要: 基于卷积神经网络的雾霾环境视觉目标检测, 通常直接利用无雾条件下清晰的数据集对网络进行训练, 网络无法通过训练集获取雾霾图像下目标的特征权重配置, 因而检测效果不佳。 为了提高雾霾环境下目标检测效果, 从数据集构建角度入手, 提出了一种在无雾图像上生成带雾图像的方法。 首先以KITTI-objection数据集作为原始无雾图像, 利用改进的Monodepth无监督深度估计方法生成原始图像的深度图像。 然后构造几何先验深度模板, 以图像熵为权值与深度图进行融合, 并根据大气散射模型, 由深度图像得到雾图像。 最后, 采用基于二阶的Faster-RCNN和基于一阶的YOLOv4两种典型的目标检测架构, 对原始数据集、雾数据集、混合数据集进行训练, 并对室外自然雾霾场景数据集RESIDE-OTS进行检测。 实验结果表明, 使用混合数据集训练下的模型检测效果最好, 在YOLOv4模型下mAP值提升了5.6%, 在Faster R-CNN网络下mAP值提升了5.0%, 从而有效提升了雾霾环境下卷积神经网络的目标识别能力。

Abstract: For traffic object detection in foggy environment based on convolutional neural network (CNN), data sets in fog-free environment are generally used to train the network directly. As a result, the network cannot learn the object characteristics in the foggy environment in the training set, and the detection effect is not good. To improve the traffic object detection in foggy environment, we propose a method of generating foggy images on fog-free images from the perspective of data set construction. First, taking the KITTI objection detection data set as an original fog-free image, we generate the depth image of the original image by using improved Monodepth unsupervised depth estimation method. Then, a geometric prior depth template is constructed to fuse the image entropy taken as weight with the depth image. After that, a foggy image is acquired from the depth image based on the atmospheric scattering model. Finally, we take two typical object-detection frameworks, that is, the two-stage object-detection Fster region-based convolutional neural network (Faster-RCNN) and the one-stage object-detection network YOLOv4, to train the original data set, the foggy data set and the mixed data set, respectively. According to the test results on RESIDE-RTTS data set in the outdoor natural foggy environment, the model under the training on the mixed data set shows the best effect. The mean average precision (mAP) values  are increased by 5.6% and by 5.0% under the YOLOv4 model and the Faster-RCNN network, respectively. It is proved that the proposed method can effectively improve object identification ability foggy environment.

关键词: 交通目标识别; 雾霾图像生成; 无监督深度估计; YOLOv4模型; Faster R-CNN

作者: 王向军, 刘灵皓, 倪育博, 王霖

作者单位: 1. 天津大学 精密测试技术及仪器国家重点实验室, 天津 ;2. 天津大学 微光机电系统技术教育部重点实验室, 天津

刊名: 《测试科学与仪器》(英文)

Journal: Journal of Measurement Science and Instrumentation

年,卷(期): 2021, (1)

在线出版日期: 2021年03月28日

页数: 9

页码: 44-52